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The Lagrange finite element spaces, Pr (Th)

u Elements: A triangulation Th consisting of simplices T

u Shape functions: V (T ) = Pr (T ), some r ≥ 1

u Degrees of freedom (which must be unisolvent):

v ∈ ∆0(T ): u 7→ u(v)

e ∈ ∆1(T ): u 7→
∫

e(tre u)q, q ∈ Pr−2(e)

f ∈ ∆2(T ): u 7→
∫

f (trf u)q, q ∈ Pr−3(f )

T : u 7→
∫

T u q, q ∈ Pr−4(T )

For a general simplex of any dimension and a face f of any dimension:

u 7→
∫

f
(trf u)q, q ∈ Pr−d−1(f ), f ∈ ∆d (T ), d ≥ 0

Assembled piecewise polynomials are continuous, and

Pr (Th) = { u ∈ H1(Ω) | u|T ∈ V (T ) ∀T ∈ Th }
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The Maxwell eigenvalue problem with Lagrange elements

Boffi–GastaldiFind nonzero u ∈ H(curl) such that∫
curl u · curl v dx = λ

∫
u · v dx , ∀v ∈ H(curl)

Ω = (0, π)× (0, π), λ = m2 + n2, m, n > 0

elts: 16 64 256 1024 4096

2.2606 2.0679 2.0171 2.0043 2.0011
4.8634 5.4030 5.1064 5.0267 5.0067
5.6530 5.4030 5.1064 5.0267 5.0067
5.6530 5.6798 5.9230 5.9807 5.9952

11.3480 9.0035 8.2715 8.0685 8.0171

1.3488 0.2576 0.0587 0.0143 0.0036
1.5349 0.4196 0.0896 0.0214 0.0053
2.4756 0.9524 0.1805 0.0417 0.0102
5.5582 1.4513 0.2938 0.0686 0.0169
5.7592 1.7446 0.3694 0.0826 0.0200

!!
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The Maxwell eigenvalue problem with H(curl) elements

#V = VectorFunctionSpace(mesh, "Lagrange", 1)

V = FunctionSpace(mesh, "N1curl", 1)

Shape fns: (a− bx2, c + bx1) DOFs: u 7→
∫

e u · t

elts: 16 64 256 1024 4096

1.8577 1.9655 1.9914 1.9979 1.9995
4.1577 4.8929 4.9749 4.9938 4.9985
4.1577 4.8929 4.9749 4.9938 4.9985
8.2543 7.4306 7.8619 7.9657 7.9914
9.7268 9.8498 9.9858 9.9975 9.9994

2.1098 2.0324 2.0084 2.0021 2.0005
3.5416 4.8340 4.9640 4.9912 4.9978
4.8634 5.0962 5.0259 5.0066 5.0017
9.7268 8.0766 8.1185 8.0332 8.0085
9.7268 8.9573 9.7979 9.9506 9.9877

A good element for this problem in both theory and practice. . . 3 / 32



Darcy flow

u =
k
µ

grad p, div u = f

Find (u, p) ∈ H(div)× L2 such that∫ (µ
k

u · v − p div v + div u q
)

dx =

∫
f q dx , ∀(v , q) ∈ H(div)×L2

Lagrange–Lagrange is singular

Lagrange–DG is unstable in > 1 dimensions

RT–DG is stable and convergent

4 / 32



Darcy flow computed with RT–DG

pressure field
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Darcy flow computed with Lagrange–DG

pressure field
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The Finite Element Zoo (Cubic Pavillion)
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The Finite Element
Exterior Calculus

Viewpoint



Differential forms and the L2 de Rham complex
Differential k -forms, Λk (Ω): defined for any manifold Ω, 0 ≤ k ≤ dim Ω

0-forms are simply functions Ω→ R and 1-forms are covector
fields. In local coordinates, the general k -form is

u =
∑
σ

fσ dxσ :=
∑

1≤σ1<···<σk≤n

fσ1···σk dxσ1 ∧ · · · ∧ dxσk

The wedge product of a k -form and an l-form is a (k + l)-form.

The exterior derivative du of a k -form is a (k + 1)-form

A k -form can be integrated over a k -dimensional subset of Ω

F : Ω→ Ω′ induces a pullback F∗ taking k -forms on Ω′ to k -forms on Ω

The pullback of the inclusion is the trace.

Stokes theorem:
∫

Ω
du =

∫
∂Ω

tr u, u ∈ Λk−1(Ω)

On a Riemannian manifold, the space L2Λk (Ω) is defined, leading to

HΛk (Ω) = { u ∈ L2Λk | du ∈ L2Λk+1 }

0→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn−1(Ω)
d−→ HΛn(Ω)→ 0 8 / 32



Differential forms in R3 and the PDEs of math physics

Ω a domain in R3

0 −−→ HΛ0(Ω)
d−−→ HΛ1(Ω)

d−−→ HΛ2(Ω)
d−−→ HΛ3(Ω) −−→ 0

0 −−→ H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω) −−→ 0

0-forms: temperature; electric potential; displacement
1-forms: temperature gradient; electric field; magnetic field; strain
2-forms: heat flux; magnetic flux; vorticity; stress
3-forms: charge density; mass density; load

“Physical vector quantities may be divided into two classes, in one of which
the quantity is defined with reference to a line, while in the other the quantity
is defined with reference to an area.”

– James Clerk Maxwell, Treatise on Electricity & Magnetism, 1891
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Finite Element Exterior Calculus

FEEC identifies the properties that finite element subspaces of HΛk

should possess:

The finite element spaces should form a subcomplex of the de Rham
complex, and the projections induced by the degrees of freedom
should commute with the exterior derivative.

0 −→ HΛ0(Ω)
d−→ HΛ1(Ω)

d−→ · · · d−→ HΛn(Ω) −→ 0

π0
h

y π1
h

y π2
h

y
0 −→ Λ0(Th)

d−→ Λ1(Th)
d−→ · · · d−→ Λn(Th) −→ 0

DNA-Falk-Winther:
Finite element exterior calculus, homological techniques and applications, Acta Numer ’06

Finite element exterior calculus: from Hodge theory to numerical stability, BAMS ’10
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Simplicial elements



The Pr Λ
k and P−r Λk families of elements in Rn

u Triangulation Th consists of n-simplices T
u Shape functions: V (T ) = Pr Λ

k (T ) or P−r Λk (T )
u DOFs?

P−r Λk (T ) is defined via the Koszul differential κ:

P−r Λk (T ) = Pr−1Λk (T ) + κPr−1Λk+1(T )

κ : Λk → Λk−1, κ(dx i) = x i , κ(u∧v) = (κu)∧v + (−)ku∧(κv)

κ(f dxσ1∧ · · · ∧dxσ
k
) =

∑k
i=1(−)i f xσi dxσ1∧ · · · d̂xσi · · · ∧dxσ

k

In R3: Pr Λ
3 X−−−→ Pr+1Λ2 ×X−−−→ Pr+2Λ1 ·X−−−→ Pr+3Λ0

κ ◦ κ = 0

Homotopy property:
(dκ+ κd)u = (r + k)u if u ∈ Pr Λ

k is homogeneous

e.g., curl(~x × ~v) + ~x (div~v) = (deg~v + 2)~v
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Some consequences of the homotopy formula
(dκ+ κd)u = cu

1) c κu = κdκu. Therefore, dκu = 0 =⇒ κu = 0

Thus, if u ∈ P−r Λk and du = 0, then u ∈ Pr−1Λk .

2) The polynomial de Rham complex

0 −→ Hr Λ
0 d−→ Hr−1Λ1 d−→ · · · d−→ Hr−nΛn −→ 0

and the Koszul complex

0 ←− Hr Λ
0 κ←− Hr−1Λ1 κ←− · · · κ←− Hr−nΛn ←− 0

are exact.

3) From this we can compute the dimension of κHr Λ
k ,

and so of P−r Λk :

dimP−r Λk =

(
r + n
r + k

)(
r + k − 1

k

)
cf. dimPr Λ

k =

(
r + n
r + k

)(
r + k

k

)
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Characterization of the Pr Λ
k and P−r Λk spaces

Theorem

The following spaces of polynomial differential k-forms are invariant
under all affine transformations of Rn:

Pr Λ
k , r ≥ 0,

P−r Λk , r ≥ 1,

{ u ∈ Pr Λ
k | du ∈ PsΛk }, r ≥ 1, s < r − 1

Moreover, these are the only affine invariant proper subspaces.

The proof is based on the representation theory of GL(n).
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Degrees of freedom

DOFs for Pr Λ
k (T ) (DNA-Falk-Winther ’06):

u 7→
∫

f
(trf u)∧q, q ∈ P−r+k−d Λd−k (f ), f ∈ ∆d (T ), d = dim f ≥ k

DOFs for P−r Λk (T ) (Hiptmair ’99):

u 7→
∫

f
(trf u)∧q, q ∈ Pr+k−d−1Λd−k (f ), f ∈ ∆d (T ), d = dim f ≥ k

• Continuity is exactly that of HΛk = { u ∈ L2Λk | du ∈ L2Λk+1 }

Pr Λ
k (Th) = { u ∈ HΛk | u|T ∈ Pr Λ

k (T ), ∀T ∈ Th }.
or P−r

• The spaces form subcomplexes with commuting projections:

0 −→ Pr Λ
0(Th)

d−→ Pr−1Λ1(Th)
d−→ · · · d−→ Pr−nΛn(Th) −→ 0

0 −→ P−r Λ0(Th)
d−→ P−r Λ1(Th)

d−→ · · · d−→ P−r Λn(Th) −→ 0

decreasing degree constant degree Unisolvence?
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P−r Λk k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3

Lagrange

DGRaviart-
Thomas

’75

Nedelec
face
elts
’80

Nedelec
edge
elts
’80

Whitney ’57

∑
i

(−)iλi dλ0∧ · · · ∧d̂λi∧ · · · ∧dλk



Pr Λ
k k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3

Lagrange

DG
BDM
’85

Nedelec
face
elts,
2nd
kind
’86

Nedelec
edge
elts,
2nd
kind
’86

Sullivan ’78



FEniCS syntax

FEniCS supports all the P−r Λk and Pr Λ
k spaces in 1, 2, and 3

dimensions.

V = FunctionSpace(mesh, "P- Lambda", r, k)

V = FunctionSpace(mesh, "P Lambda", r, k)

These are synonyms for the more traditional names.
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Unisolvence



Unisolvence for Lagrange elements in n dimensions

Shape fns: Pr (T ), DOFs: u 7→
∫

f (trf u)q, q ∈ Pr−d−1(f ), d = dim f

DOF count:

#DOF =
n∑

d=0

(n+1
d+1

)(r−1
d

)
=
(r+n

n

)
= dimPr (T ).

#∆d(T ) dimPr−d−1(fd) dimPr (T )

Unisolvence proved by induction on dimension.
Suppose u ∈ Pr (T ) and all DOFs vanish. Let f be a face of T . Note

trf u ∈ Pr (f ), so is a Lagrange shape function on the face

all the Lagrange DOFs on the face applied to trf u are DOFs on T
applied to u, so vanish

Therefore trf u vanishes by the inductive hypothesis. Thus u ∈ P̊r (T ) =⇒
u = (

∏n
i=0 λi )p, p ∈ Pr−n−1(T )

The explicit choice of weight fn q = p in the interior DOFs implies p = 0.
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Steps to verifying unisolvence

1. Verify that the number of DOFs equals dim V (T )

2. Verify the trace properties:
a) trf V (T ) ⊂ V (f ), and
b) the pullback tr∗f :V (f )∗→V (T )∗ takes DOFs for V (f ) to DOFs for V (T )

3. u ∈ V̊ (T ) & the interior DOFs vanish =⇒ u = 0

subspace w/
vanishing trace

1,2,3 =⇒ unisolvence, by induction on dimension
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Unisolvence for P−r Λk

1. dimP−
r Λk (T ) =

(r+n
r+k

)(r+k−1
k

)
(homotopy property)

#DOFs =
∑

d≥k #∆d (T ) dimPr+k−d−1Λk (Rd ) =
∑

d≥k

(n+1
d+1

)(r+k−1
d

)(d
k

)
These are equal by elementary manipulations.

2. The trace property follows from definitions (since κ commutes with trf ).

3. So we only need show:

(†) u ∈ P̊−
r Λk (T ) & (∗)

∫
T u∧q = 0 ∀q ∈ Pr+k−n−1Λn−k (T ) =⇒ u = 0

A weaker result can be proven by an explicit choice of q

(‡) u ∈ P̊r−1Λk (T ) & (∗) =⇒ u = 0

So we only need to show that u ∈ Pr−1Λk (T ).

By the homotopy formula, u ∈ P−
r Λk , du = 0 =⇒ u ∈ Pr−1Λk ,

so it suffices to show that du = 0.

But du ∈ P̊r−1Λk+1(T ) so satisfies (‡) with k→k +1. The hypothesis (∗) for

du then becomes: (∗)
∫

T du∧q = 0 ∀q ∈ Pr+k−nΛn−k−1(T ) which holds by
integration by parts and (∗).

20 / 32



Summary for simplicial elements

The argument adapts easily to Pr Λ
k . Thus a single argument proves

unisolvence for all of the most important simplicial FE spaces at once.

To obtain the “best” proof, it is necessary

to consider P−r Λk and Pr Λ
k together

to consider all form degrees k

to consider general dimension n

“A finite element which does not work in n-dimensions is probably not
so good in 2 or 3 dimensions.”
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Cubical elements



The tensor product construction

DNA–Boffi–Bonizzoni 2012
Suppose we have a de Rham subcomplex V on an element S ⊂ Rm:

· · · → V k d−→ V k+1 → · · · V k ⊂ Λk (S)

and another, W , on another element T ⊂ Rn:

· · · → W k d−→ W k+1 → · · ·

The tensor-product construction produces a new complex V ∧W , a
subcomplex of the de Rham complex on S × T .

Shape fns: (V ∧W )k =
⊕

i+j=k

π∗SV i ∧ π∗T W j (πS : S × T → S)

DOFs: (η ∧ ρ)(π∗Sv∧π∗T w) := η(v)ρ(w)
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Finite element differential forms on cubes: the Q−r Λk family

Start with the simple 1-D degree r finite element de Rham complex, Vr :

0 −→ Pr Λ
0(I)

d−→ Pr−1Λ1(I) −→ 0

u(x) −→ u ′(x) dx

Take tensor product n times: Q−r Λk (I n) := (Vr ∧ · · · ∧ Vr )
k

Q−r Λ0 = Qr ,
Q−r Λ1 = Qr−1,r ,r ,...dx1 +Qr ,r−1,r ,...dx2 + · · · ,
Q−r Λ2 = Qr−1,r−1,r ,...dx1 ∧ dx2 + · · · , . . .

→ →
Q−2 Λ0 Q−2 Λ1 Q−2 Λ2

constant degree
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Q−r Λk k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3



The 2nd family on cubes: 0-forms

DNA–Awanou 2011

The Q−r Λk family reduces to Qr when k = 0. For the second family,
we get the serendipy space Sr .

2-D shape fns: Sr (I2) = Pr (I2)⊕ span[x r
1x2, x1x r

2]

DOFs: u 7→
∫

f trf u q, q ∈ Pr−2d (f ), f ∈ ∆(In)

n-D shape fns: Sr (In) = Pr (In)⊕
⊕
`≥1

Hr+`,`(In)

Hr ,`(In) = span of monomials of degree r , linear in ≥ ` variables
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The 2nd family of finite element differential forms on cubes

DNA–Awanou 2012

The Sr Λ
k (I n) family of FEDFs, uses the serendipity spaces for

0-forms, and serendipity-like DOFs.

DOFs: u 7→
∫

f trf u∧q, q ∈ Pr−2d Λd−k (f ), f ∈ ∆(I n)

Shape fns:

Sr Λ
k (I n) = Pr Λ

k (I n)⊕
⊕
`≥1

[κHr+`−1,`Λ
k+1(In)⊕ dκHr+`,`Λ

k (In)]︸ ︷︷ ︸
deg=r+`

Hr ,`Λ
k (In) = span of monomials xαi

1 · · · x
αn
n dxσ1 ∧ · · · ∧ dxσk ,

|α| = r , linear in ≥ ` variables not counting the xσi

These spaces satisfy the trace property, and unisolvence holds for all
n ≥ 1, r ≥ 1, 0 ≤ k ≤ n.
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The 2nd cubic family in 2-D

→ →
S2Λ0 S1Λ1 S0Λ2

decreasing degree

→ →
S3Λ0 S2Λ1 S1Λ2

Sr Λ
k (I 2)

k 1 2 3 4 5
0 4 8 12 17 23
1 8 14 22 32 44
2 3 6 10 15 21

Q−r Λk (I 2)

k 1 2 3 4 5
0 4 9 16 25 36
1 4 12 24 40 60
2 1 4 9 16 25
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The 3D shape functions in traditional FE language

Sr Λ
0: polynomials u such that deg u ≤ r + ldeg u

Sr Λ
1:

(v1, v2, v3) + (x2x3(w2−w3), x3x1(w3−w1), x1x2(w1−w2)) + grad u,

vi ∈ Pr , wi ∈ Pr−1 independent of xi , deg u ≤ r + ldeg u + 1

Sr Λ
2:

(v1, v2, v3) + curl(x2x3(w2 − w3), x3x1(w3 − w1), x1x2(w1 − w2)),

vi ,wi ∈ Pr (I3) with wi independent of xi

Sr Λ
3: v ∈ Pr
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Dimensions and low order cases

Sr Λ
k (I 3)

k 1 2 3 4 5
0 8 20 32 50 74
1 24 48 84 135 204
2 18 39 72 120 186
3 4 10 20 35 56

Q−r Λk (I 3)
k 1 2 3 4 5
0 8 27 64 125 216
1 12 54 96 200 540
2 6 36 108 240 450
3 1 8 27 64 125

S1Λ1(I3)
new element

S1Λ2(I3)
corrected element
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Approximation properties

On cubes the Q−r Λk and S−r Λk spaces provide the expected order of
approximation. Same is true on parallelotopes, but accuracy is lost by
non-affine distortions, with greater loss, the greater the form degree k .

The L2 approximation rate of the space Qr = Q−r Λ0 is r + 1 on
either affinely or multilinearly mapped elements.

The rate for Sr = Sr Λ
0 is r + 1 on affinely mapped elements, but

only max(2, br/nc+ 1) on multilinearly mapped elements.

The rate for Q−r Λk , k > 0, is r on affinely mapped elements,
r − k + 1 on multilinearly mapped elements.

The rate for Pr Λ
n = Sr Λ

n is r + 1 for affinely mapped elements,
br/nc − n + 2 for multilinearly mapped.

DNA-Boffi-Bonizzoni 2012
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P−r Λk k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3

PrΛ
k k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3

Q−r Λk k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3

SrΛ
k k = 0 k = 1 k = 2 k = 3

r = 1
n = 1 r = 2

r = 3

r = 1

n = 2 r = 2

r = 3

r = 1

n = 3 r = 2

r = 3



Future directions

Hermite finite elements (Argyris)

Smooth spline spaces (isogeometric elements)

Nonconforming finite elements (Crouzeix–Raviart, Morley)

Other complexes, such as the Stokes complex (J. Evans ’11)

0→ H1(Ω)
grad−−→ H1(curl,Ω)

curl−−→ H1(Ω;R3)
div−→ L2(Ω;R3)→ 0

H1(curl,Ω) = { u ∈ H(curl,Ω) | curl u ∈ H1(Ω;R3) }
or the elasticity complex

0→ H1(Ω;R3)
ε−→ H(J,Ω;S3×3)

J−→ H(div,Ω;S3×3)
div−→ L2(Ω;R3)→ 0

J = curl T curl = St. Venant tensor = linearized Einstein tensor
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