
Automatic differentiation of a fluid-structure interaction problem
Gabriel Balaban, Anders Logg,
Marie E. Rognes Simula Research Laboratory
University of Oslo FEniCS Worksop 2013, Cambridge 2013–03–18

March 20, 2013



Examples of Fluid–structure interaction

Modelling Challenges

I model must integrate solid and fluid mechanics

I fluid geometry depends on structure deformation



Solving the FSI problem

Issues:

I Continuum mechanics formulation

I Partitioned vs monolithic

I Fixed-pointed vs Newton

I Approximation of the Jacobian

In this work we:

I derive a Newton’s method with exact Jacobians for FSI
problems using the arbitrary Lagrangian Eulerian
formulation

I implement a monolithic solver in Python (using FEniCS)

I investigate various optimizations and simplifications



Setup of the FSI problem
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Mismatch in standard fluid and solid models
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Mesh smoothing problem

Mesh equation
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Arbitrary Lagrangian-Eulerian framework
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Interface conditions
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I Stress continuity:
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Linearization of the FSI problem

Two challenges:

I Derivative of fluid equation with respect to geometry?
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I Linearization of essential BCs
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The reference domain approach

I Map the fluid problem to the reference domain

I Use standard techniques to differentiate

I Straightforward but tedious

I Can be automated!



Navier–Stokes pulled back to reference domain

I Equation:
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Interface conditions: How to linearize?
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Linearization of essential boundary conditions

Introduce Lagrange multipliers (τ
F
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M
) and corresponding trial
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The linearized FSI operator (the Jacobian)



FEniCS implementation

J = derivative(R, U)



An analytic test problem

pdf/pdf/analyticproblem.pdftex
Primary variables:
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Convergence for analytic test problem
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A two-dimensional blood vessel



Break-down of run-time

Problem Routine Calls Time (s)
Analytic problem Jacobian assembly 28 83.9s 90%
mesh size = 231 Linear solve 28 1.86s 2%
time steps = 10 Residual assembly 38 0.915s 1%

Blood vessel Jacobian assembly 343 2980s 81%
mesh size = 1271 Linear solve 343 254s 18%
time steps = 140 Residual assembly 483 64.1s 1%



Effect of Jacobian reuse

Problem Routine Calls
Analytic problem Jacobian assembly 1 (-27) -95 %
mesh size = 231 Linear solve 51 (+23) -96%
time steps = 10 Residual assembly 61 (+23) +54%

Total Runtime: -93 %

Blood vessel Jacobian assembly 25 (-308) -93 %
mesh size = 1271 Linear solve 1287 (+944) -92 %
time steps = 140 Residual assembly 1427 (+944) +192%

Total -91 %



Effect of Jacobian reuse
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Optimization summary
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Summary: How to use the automatic derivative to solve
FSI problems

I Map the fluid equation to the
reference domain

I Impose essential BC’s using
Lagrange multipliers

I Let the automatic derivative
compute the Jacobian

Challenges / work in progress:

I Long FFC compilation times

I Preconditioning


