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An old friend abroad

Poisson’s equation with homogenous Dirichlet bcs

Find u such that

−∆u = 1 in Ω,

u = 0 on ∂Ω.

Finite element variational form

Find uh ∈ Vh(Th) such that

〈∇uh,∇ v〉Ω = 〈1, v〉Ω

for all v ∈ Vh(Th).

We are interested in the case where Ω is embedded in Rn

but has topological dimension m with 1 ≤ m ≤ n ≤ 3.
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Given a mesh of your favorite manifold

[Moebius strip mesh generated by script provided by Harish Narayanan, 2009]
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The solver code is identical to the case where the
geometrical equals the topological dimension

from dolfin import *

# Input mesh

mesh = Mesh("Moebius2.xml.gz")

# Define and solve problem as usual on this mesh

V = FunctionSpace(mesh , "Lagrange", 1)

u = TrialFunction(V)

v = TestFunction(V)

a = inner(grad(u), grad(v))*dx

f = Constant(1.0)

L = f*v*dx

u = Function(V)

bc = DirichletBC(V, 0.0, "on_boundary")

solve(a == L, u, bc)
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The resulting solution seems plausible

[Available in DOLFIN trunk (bzr branch lp:dolfin) and in FEniCS 1.2]
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Interpreting UFL over manifolds
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Finite elements can be defined on simplicial cells
with differing geometric and topological dimension

# Define triangle cell embedded in R^3

cell = Cell("triangle", 3)

cell.geometric_dimension () == 3 # True

cell.topological_dimension () == 2 # True

# Define elements as usual

Q = FiniteElement("Lagrange", cell , 1)

RT = FiniteElement("RT", cell , 1)

# Define Lagrange vector element

# Value dimension default to geometric dimension

V = VectorElement("Lagrange", cell , 1)

# Arguments defined over V will have 3 components:

u = Coefficient(V)

u[0], u[1], u[2]
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The UFL gradient is defined via the natural
definition of the directional derivative
The differential operators dx, Dx, div, rot, curl follows.

cell = Cell("triangle", 3)

V = FiniteElement("Lagrange", cell , 1)

u = Coefficient(V)

u.dx(2) # What does this mean?

Interpret

grad(u) := ∇u

Define

u.dx(i) = grad(u)[i]

Dx(u, i) = grad(u)[i]

Define ∇u(x) ∈ Rn via

∇u(x) · v = lim
ε→0

u(x+ εv)− u(x)
ε

for v in the tangent space.
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Measures are defined with reference to the
topological dimension of the mesh

I*dx :=
∑
T∈T

∫
T
I dx, I*ds :=

∑
e∈Ee

∫
e
I ds, I*dS :=

∑
e∈Ei

∫
e
I ds.

For a mesh of geometric dimension n and topological dimension
m, dx and ds refer to the standard integration measures on Rm

and Rm−1 respectively.

# Integrate 1 over the exterior facets of the mesh

I = Constant(1.0)

a = I*ds

A = assemble(a, mesh=mesh)

# Integrate 1 over the cells of the surface mesh

surface = BoundaryMesh(mesh , "exterior")

b = I*dx

B = assemble(b, mesh=surface)
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Compiling forms over manifolds
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Form code generation in FFC is based on pulling the
form back to a reference element

(0, 1)

(0, 0) (1, 0)

X1

X0

x

GT

X

Define element transformation GT : T0 → T and its rectangular
Jacobian JT

x = GT (X), JT (X) =
∂GT (X)

∂X
=

∂x

∂X
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The Gram determinant is the appropriate
generalized determinant of rectangular Jacobians

Map for scalar fields (and affine vector fields):

φ(x) = Φ(X)

The transform of the mass matrix follows:∫
T
φ(x)ψ(x) dx =

∫
T0

Φ(X) Ψ(X) |J | dX,

using the Gram determinant

|J | = det(JTJ)1/2.
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The Moore-Penrose pseudoinverse is the appropriate
pseudoinverse of rectangular Jacobians

The natural transform for gradients:

∇x φ(x) = (J†)T ∇X Φ(X)

uses the Moore-Penrose pseudo-inverse:

J† =
(
JTJ

)−1
JT .

The transform of the stiffness matrix follows∫
T
∇φ · ∇ψ dx =

∫
T0

(
(J†)T ∇Φ

)
·
(

(J†)T ∇Ψ
)
|J | dX.
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H(curl) and H(div) elements map as usual with the
generalized geometry definitions
But cell orientation can not be determined locally

Map H(curl) functions via the covariant Piola:

φ(x) = (J†)T Φ(X).

Map H(div) functions via the contravariant Piola:

φ(x) = ±|J |−1J Φ(X).

In flat space, the sign of the Jacobian determinant
ensures that contravariant Piola elements are mapped
correctly. In contrast, the Gram determinant carries no
sign. Sign is therefore (and must be) determined by
combining local and global information.
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Ocean modelling on the sphere

[Numerical experiments thanks to Andrew McRae/Colin J. Cotter]
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Mixed Poisson on the sphere: H(div)× L2

How to provide global orientation information

Find (σ, u, r) ∈ Σ× V ×R = W ⊂ H(div)× L2 × R such that

〈σ, τ〉+ 〈div σ, v〉+ 〈div τ, u〉+ 〈r, v〉+ 〈t, u〉 = 〈g, v〉
for all (τ, v, t) ∈W .
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mesh = Mesh("sphere.xml.gz")

global_normal = Expression (("x[0]", "x[1]", "x[2]"))

mesh.init_cell_orientations(global_normal)
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Mixed Poisson on the sphere: L2 ×H1

How to force a vector-field into the tangent space via a Lagrange multiplier

Find (σ, u, l, r) ∈W ⊂ L2 ×H1 × L2 × R such that

〈σ, τ〉+〈τ,∇u〉−〈σ,∇ v〉−〈l, τ ·n〉+〈k, σ·n〉+〈r, v〉+〈t, u〉 = −〈g, v〉

for all (τ, v, k, t) ∈W . Take W = DG3
1 × CG2 ×DG1 × R.
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Shallow water equations over the surface of the
earth

Find the velocity u and the depth perturbation D, given gravity g
and base layer depth H

ut + fu⊥ + g∇D = 0

Dt +H div(u) = 0
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Current status

Anything that works for meshes with geometric and
topological dimension n for n = 1, 2, 3, should also work
for the case of topological dimension m and geometric
dimension n for 1 ≤ m ≤ n ≤ 3.

Limitations

I No mixed spaces on cells of differing dimensions (still): cannot
combine spaces on facets with spaces on cells for instance.

I No curved elements (still): linear tessellations only
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