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Nektar++: An h to p finite 
element framework
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NUMERICAL MATHEMATICS AND SCIENTIFIC COMPUTATION is 
a series designed to provide texts and monographs for graduate students 
and researchers on a wide range of mathematical topics at the interface 
of computational science and numerical analysis.

George Em Karniadakis and Spencer Sherwin

Spectral methods have long been popular in direct and large eddy simulation 
of turbulent flows, but their use in areas with complex-geometry computational
domains has historically been much more limited. More recently the need to find
accurate solutions to the viscous flow equations around complex configurations
has led to the development of high-order discretisation procedures on unstruc-
tured meshes, which are also recognised as more efficient for solution of time-
dependent oscillatory solutions over long time periods. 

Here Karniadakis and Sherwin present a much-updated and expanded version 
of their successful first edition covering the recent and significant progress in
multi-domain spectral methods at both the fundamental and application level.
Containing over 50% new material, including discontinuous Galerkin methods,
non-tensorial nodal spectral element methods in simplex domains, and stabilisa-
tion and filtering techniques, this text aims to introduce a wider audience to the
use of spectral/hp element methods with particular emphasis on their application
to unstructured meshes. It provides a detailed explanation of the key concepts
underlying the methods along with practical examples of their derivation and
application, and is aimed at students, academics and practitioners in computa-
tional fluid mechanics, applied and numerical mathematics, computational
mechanics, aerospace and mechanical engineering and climate/ocean modelling.
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h-type geometric 
flexibility

p-type exponential 
accuracy

Provide an unified interface to an open environment 
which blends high- and low-order finite element methods.



Nektar++: www.nektar.info



Nektar++: www.nektar.info



Nektar++: www.nektar.info



Nektar++: www.nektar.info



Nektar++: www.nektar.info











































 












Homogeneous Expansions









Direct Stability Analysis

Complex 
Geometry 

LNS & DNS



















Hybrid Numbering & Mixed Parallelisation

Global numbering

Local numbering

Hybrid numbering 

Spectral/hp plane 
parallelisation



Fourier
parallelisation

Mixed
parallelisation
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Local Matrix: Hardware diversity
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How many parameters?

P1
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P3

P4 P5,P6

6 parameters

P1
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5 parameters

Hexahedral: 12 edges, 8 faces, 1 interior = 31 parameters
Tetrahedral:  6 edges, 4 faces, 1 interior = 17 parameters



Tensor product design
Spectral/hp element methods Sec. 4: Spectral/hp elements in 2D
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Figure 17: Construction of a two-dimensional expansion basis from the tensor product of two
one-dimensional expansions of order P = 4. A modal expansion (top) and a nodal
expansion (bottom) are shown.

expansion. Since a large part of the efficiency of the quadrilateral expansion (particu-
larly at larger polynomial orders) arises from the tensor product construction, we would
like to use a similar procedure to construct expansions within the triangular domains.
Therefore, to extend the tensor product expansion to simplex regions such as a triangle
we need to generalise the tensor product expansion concept, which can be achieved by
using a collapsed coordinate system.

4.1.3 Collapsed coordinate system

In this section we will focus on 2D expansions defined on the standard triangle Tst,
defined as

Tst = {(ξ1 , ξ2)|− 1 ≤ ξ1 , ξ2 ; ξ1 + ξ2 ≤ 0} .

In the quadrilateral expansions discussed in section 4.1.1 we generated a multidi-
mensional expansion by forming a tensor product of one-dimensional expansions based
on a Cartesian coordinate system. The one-dimensional expansion was defined between
constant limits and therefore an implicit assumption of the tensor extension was that the
coordinates in the two-dimensional region were bounded between constant limits. How-
ever this is not the case in the standard triangular region as the bounds of the Cartesian
coordinates (ξ1, ξ2) are dependent upon each other.
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LibHPC
J. Cohen, P. Burovskiy, J. Darlington

• Target software on multi-core, distributed & 
hetrogeneous platforms

• Run on Infrastructure-as-a-service (IaaS) clouds

• Why? 

• Intermittent running makes access to HPC difficult 

• Scale resource beyond local capacity



Heterogeneous Computing Infrastructure, e.g. Infrastructure as a Service Cloud Computing Platforms
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so may be treated through isolation of the pulmonary veins
using a ring of lesions. Persistent AF is typically due to trig-
gers within the walls of the atrium, requiring greater clinical
insight from which to design an ablation strategy to correct
the arrhythmia.

Computer modelling o↵ers the exciting opportunity to simu-
late ablation therapy prior to intervention on the patient us-
ing a computer model, as well as for diagnosis purposes. The
particular example simulation we will use as a test case is
electrical excitation of the left atrium, triggered from a fixed
site in the chamber wall. The electrical activation pattern is
shown in Figure. 4. Modern cardiac electrophysiology mod-
elling couples a tissue-level model, such as the monodomain
or bidomain partial di↵erential equations (PDEs), with an
ionic cell model that represents the exchange of di↵erent ions
between cells and an extracellular space using a system of
ordinary di↵erential equations (ODEs) at each point in the
domain. Here, we consider the monodomain model

�

✓
Cm

@u

@t

+ J

◆
= r · (�ru) (1)

@v

@t

= f(u,v). (2)

This system computes the potential di↵erence u(x, t) across
the membrane of a cell. Here, � is the cellular surface-to-
volume ratio, Cm is the membrane capacitance and J(x, t) =
J

ion

(x, t)+J

s

(x, t) is the total outward flowing current from
a cell as given by the cell model, f(u,v), and the stimulus
current used to activate the system. The particular choice
of cell model used is that of Courtemanche et al. [8] which is
specific to human atrial myocytes and consists of a system of
21 ODEs. Time integration is performed using a first-order
implicit-explicit scheme for the PDE, forward Euler for the
cell model concentration variables and Rush-Larsen for the
cell model gating variables.

The ODE system evolves across a broad range of timescales
resulting in a particularly sti↵ system which requires small
timesteps to maintain numerical stability. The rapid changes
in the ODE system produce steep spatial gradients in the
PDE model which require high spatial resolution to resolve
in order to compute the correct conduction velocity. Conse-
quentially, such a calculation is highly computationally in-
tensive. However, the ultimate goal of these simulations
is to assist as a clinical utility, where rapid simulation of
patient-specific atrial computer models is required. When
coupled with the complexity and resolution requirements of
the model, high-performance compute clusters are therefore
an essential requirement if the model is to be of practical
use. In a clinical environment such resources are impracti-
cal in terms of space, power and administration. Further-
more, simulations in typical usage scenarios would be in-
frequent – in general two or three times per day at most
– and thus resources under-populated. A cloud computing
platform therefore provides a viable alternative to local re-
sources, whilst still allowing for rapid simulation execution.

In our simulations of cardiac elecrophysiology, the monodomain
model (1) and (2) is implemented using the Nektar++ frame-
work. The libraries which compose this framework rep-
resent the domain on which the PDE is solved with the
spectral/hp element discretisation, which we outline in the

Figure 4: Activation of left atrium at 10ms, 30ms,
50ms, 70ms, 90ms and 110ms after initial stimulus.

following section. For su�ciently smooth solutions, these
techniques achieve exponential convergence of the solution
with increasing polynomial order and additionally provide
the high spatial resolution required for these simulations.

4.2 High-order finite element methods and Nek-
tar++ implementation

High-order finite element techniques, with their low disper-
sion properties, lend themselves well to the spatial discretisa-
tion of the cardiac electrophysiology problem due to the high
spatial gradients and importance of the transient features.
In particular, we choose a spectral/hp element method which
is currently used most extensively in the field of computa-
tional fluid dynamics [13]. We restrict our description to
two dimensions, although it may be extended to three di-
mensions with relative ease.

As with any other finite element method, we consider the
tessellation of the domain of interest by a mesh ⌦ con-
sisting of non-overlapping elemental regions ⌦e such that
⌦ =

SNel
e=1

⌦e and ⌦i \ ⌦j is an edge, point or the empty
set, for i 6= j. We define standard elemental regions ⌦
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Figure 5: Comparison of total runtime with native,
virtual and libhpc deployment execution.

simulations over the same job when run directly on the host
operating system. This includes overheads due to both CPU
virtualization as well as I/O virtualization. This extra cost
is 13 seconds in absolute terms on a 4 minute simulation
using 16 cores. Higher core counts necessitate communica-
tion over the network and the deployment of multiple virtual
machines. While networking performance with the current
gigabit connection between nodes is considered to be accept-
able, we would expect to see further performance benefits
with a change to 10Gb ethernet or a low-latency intercon-
nect such as InfiniBand.

The libhpc deployment layer adds a further fixed cost of
51-113 seconds. This includes the transfer of the virtual
machine image to the target cloud nodes, initialization of
the image and transfer of the job files to the machine. It also
includes the time to shutdown the virtual instances after the
job completes.

Figure 6 shows the total scalability of the code in the cloud
environment. As in Figure 5, scalings for the native, vir-
tual and deployment environments are shown. Virtualiza-
tion clearly has no impact on the scalability of the code,
while the fixed cost associated with the deployment layer
results in an e↵ective reduced scalability. The scalability
observed for 16 cores on a single host is maintained across
32 cores on two hosts. The addition of further physical nodes
does not increase the cost of deployment since this now hap-
pens in parallel. Deployment is a fixed cost, independent of
the length of the simulation, and this penalty will become
increasingly negligible with longer runs.

5.2 User experience
In a full implementation of the libhpc framework, the map-
per would communicate with the deployer to request that
it run a job. For the purpose of this work we use a python
client application to interact directly with the deployer ser-
vice and pass it information similar to that which the libhpc
mapper would provide. A job is run from the command line
via the libhpc deployment layer using a single command:
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libhpc_deployment_client -n 2 -p 32 -i $NEKPP_IMGID

-t $16CORENODE_ID CardiacEPSolver mesh.xml

This will start instances of the Nektar++ image on cloud
nodes su�cient to host 32 processes, push the necessary in-
put files to each of the nodes, initialise the MPI processes
and start the job. Here we specify the use of virtual in-
stances that that have 16 cores so we request that 2 of these
instances are started to satisfy the requirement to run 32
processes. The deployment layer drastically reduces the time
taken and the knowledge required to run a job and improves
the robustness of the process. It is also simple enough to be
used by an end-user without extensive knowledge of the un-
derlying software and available computing hardware. While
starting a parallel MPI job can be straightforward on a sin-
gle host, configuring MPI across multiple hosts which do not
share filesystems and may not even be on the same network
is significantly more di�cult.

For users who are not comfortable with working from the
command line, this script could be wrapped up as a sim-
ple web application for execution from a web browser or a
graphical user interface could be added through a desktop
application that would provide the same functionality. Any
of the solvers within Nektar++ can be run through this
script providing flexibility and ease of access for users.

6. CONCLUSIONS AND FURTHER WORK
We have presented the deployment layer of the libhpc frame-
work that is designed to simplify the execution of large-scale
HPC applications on distributed, heterogeneous computing
infrastructure. We have demonstrated it is capable of de-
ploying a parallel compute job across multiple physical nodes
on a cloud platform by provisioning the necessary resources
without requiring the user to have knowledge of the system
configuration and hardware upon which the job will run.
An outline of the deployment architecture, resource alloca-
tion through OpenStack, and the job manager interface, for
which we have written the Nektar++-specific implementa-
tion, has been given. The primary concern in this paper
is the design and implementation of the deployment layer.
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simulations over the same job when run directly on the host
operating system. This includes overheads due to both CPU
virtualization as well as I/O virtualization. This extra cost
is 13 seconds in absolute terms on a 4 minute simulation
using 16 cores. Higher core counts necessitate communica-
tion over the network and the deployment of multiple virtual
machines. While networking performance with the current
gigabit connection between nodes is considered to be accept-
able, we would expect to see further performance benefits
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nect such as InfiniBand.

The libhpc deployment layer adds a further fixed cost of
51-113 seconds. This includes the transfer of the virtual
machine image to the target cloud nodes, initialization of
the image and transfer of the job files to the machine. It also
includes the time to shutdown the virtual instances after the
job completes.

Figure 6 shows the total scalability of the code in the cloud
environment. As in Figure 5, scalings for the native, vir-
tual and deployment environments are shown. Virtualiza-
tion clearly has no impact on the scalability of the code,
while the fixed cost associated with the deployment layer
results in an e↵ective reduced scalability. The scalability
observed for 16 cores on a single host is maintained across
32 cores on two hosts. The addition of further physical nodes
does not increase the cost of deployment since this now hap-
pens in parallel. Deployment is a fixed cost, independent of
the length of the simulation, and this penalty will become
increasingly negligible with longer runs.
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In a full implementation of the libhpc framework, the map-
per would communicate with the deployer to request that
it run a job. For the purpose of this work we use a python
client application to interact directly with the deployer ser-
vice and pass it information similar to that which the libhpc
mapper would provide. A job is run from the command line
via the libhpc deployment layer using a single command:
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Figure 6: Comparison of code scalability with na-
tive, virtual and libhpc deployment execution.

libhpc_deployment_client -n 2 -p 32 -i $NEKPP_IMGID

-t $16CORENODE_ID CardiacEPSolver mesh.xml

This will start instances of the Nektar++ image on cloud
nodes su�cient to host 32 processes, push the necessary in-
put files to each of the nodes, initialise the MPI processes
and start the job. Here we specify the use of virtual in-
stances that that have 16 cores so we request that 2 of these
instances are started to satisfy the requirement to run 32
processes. The deployment layer drastically reduces the time
taken and the knowledge required to run a job and improves
the robustness of the process. It is also simple enough to be
used by an end-user without extensive knowledge of the un-
derlying software and available computing hardware. While
starting a parallel MPI job can be straightforward on a sin-
gle host, configuring MPI across multiple hosts which do not
share filesystems and may not even be on the same network
is significantly more di�cult.

For users who are not comfortable with working from the
command line, this script could be wrapped up as a sim-
ple web application for execution from a web browser or a
graphical user interface could be added through a desktop
application that would provide the same functionality. Any
of the solvers within Nektar++ can be run through this
script providing flexibility and ease of access for users.

6. CONCLUSIONS AND FURTHER WORK
We have presented the deployment layer of the libhpc frame-
work that is designed to simplify the execution of large-scale
HPC applications on distributed, heterogeneous computing
infrastructure. We have demonstrated it is capable of de-
ploying a parallel compute job across multiple physical nodes
on a cloud platform by provisioning the necessary resources
without requiring the user to have knowledge of the system
configuration and hardware upon which the job will run.
An outline of the deployment architecture, resource alloca-
tion through OpenStack, and the job manager interface, for
which we have written the Nektar++-specific implementa-
tion, has been given. The primary concern in this paper
is the design and implementation of the deployment layer.



Summary

• Presented implementation optimisations to blend  
high and low order polynomial order

• Mixed implementation of basic operators

• Mixed Fourier discretisations.  

• Does cloud computing offer possibilities? 


